Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a.
نویسندگان
چکیده
The NH2-terminal domain of sterol-regulatory element binding protein-1a (SREBP-1a) activates transcription of genes encoding enzymes of cholesterol and fatty acid biosynthesis in cultured cells. This domain is synthesized as part of a membrane-bound precursor that is attached to the nuclear envelope and endoplasmic reticulum. In sterol-depleted cells a two-step proteolytic process releases this NH2-terminal domain, which enters the nucleus and activates transcription. Proteolysis is suppressed by sterols, thereby suppressing transcription. In the current experiments we produce transgenic mice that overexpress a truncated version of human SREBP-1a that includes the NH2-terminal domain but lacks the membrane attachment site. This protein enters the nucleus without a requirement for proteolysis, and therefore it cannot be down-regulated. Expression was driven by the phosphoenolpyruvate carboxykinase (PEPCK) promoter, which gives high level expression in liver. When placed on a low carbohydrate/high protein diet to induce the PEPCK promoter, the transgenic mice developed progressive and massive enlargement of the liver, owing to the engorgement of hepatocytes with cholesterol and triglycerides. The mRNAs encoding 3-hydroxy-3-methylglutaryl CoA (HMG CoA) synthase, HMG CoA reductase, squalene synthase, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase-1 were all elevated markedly, as was the LDL receptor mRNA. The rates of cholesterol and fatty acid synthesis in liver were elevated 5- and 25-fold, respectively. Remarkably, plasma lipid levels were not elevated. The amount of white adipose tissue decreased progressively as the liver enlarged. These studies indicate that the NH2-terminal domain of SREBP-1a can produce major effects on lipid synthesis and storage in the liver.
منابع مشابه
Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL.
Transgenic mice that overexpress the nuclear form of sterol regulatory element binding protein-1a (SREBP-1a) in liver (TgBP-1a mice) were shown previously to overproduce cholesterol and fatty acids and to accumulate massive amounts of cholesterol and triglycerides in hepatocytes. Despite the hepatic overproduction of lipids, the plasma levels of cholesterol ( approximately 45 mg/dl) and triglyc...
متن کاملIsoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells.
We have produced transgenic mice whose livers express a dominant positive NH2-terminal fragment of sterol regulatory element binding protein-1c (SREBP-1c). Unlike full-length SREBP-1c, the NH2-terminal fragment enters the nucleus without a requirement for proteolytic release from cell membranes, and hence it is immune to downregulation by sterols. We compared SREBP-1c transgenic mice with a lin...
متن کاملActivation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2.
We produced transgenic mice that express a dominant-positive truncated form of sterol regulatory element-binding protein-2 (SREBP-2) in liver and adipose tissue. The encoded protein lacks the membrane-binding and COOH-terminal regulatory domains, and it is therefore not susceptible to negative regulation by cholesterol. Livers from the transgenic mice showed increases in mRNAs encoding multiple...
متن کاملPreventing Phosphorylation of Sterol Regulatory Element-Binding Protein 1a by MAP-Kinases Protects Mice from Fatty Liver and Visceral Obesity
The transcription factor sterol regulatory element binding protein (SREBP)-1a plays a pivotal role in lipid metabolism. Using the SREBP-1a expressing human hepatoma cell line HepG2 we have shown previously that human SREBP-1a is phosphorylated at serine 117 by ERK-mitogen-activated protein kinases (MAPK). Using a combination of cell biology and protein chemistry approach we show that SREBP-1a i...
متن کاملOverexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver.
Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that regulate cholesterol and fatty acid homeostasis. In mammals, three SREBP isoforms designated SREBP-1a, SREBP-1c, and SREBP-2 have been identified. SREBP-1a and SREBP-1c are derived from the same gene by virtue of alternatively spliced first exons. SREBP-1a has a longer transcriptional a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 98 7 شماره
صفحات -
تاریخ انتشار 1996